首页 | 本学科首页   官方微博 | 高级检索  
     

约束下考虑坐标分量误差相关性的直线拟合
作者姓名:宋占峰  郭捷佳  李军
基金项目:国家自然科学基金(51678574)
摘    要:直线拟合在曲线拟合研究及工程实践中受到广泛关注,常用的普通最小二乘和正交最小二乘忽略了坐标分量误差相关性的存在. 基于此,首先论证了在铁路线路整正中全站仪测量坐标点的纵横坐标间存在误差相关性,同时线路中直线的拟合受到相邻线元的约束;然后,基于极大似然估计及拉格朗日条件极值原理,推导出了顾及约束和坐标分量误差相关性的直线拟合通用模型,并给出了高斯-牛顿迭代算法搜索最优解;最后,采用了实测的数据进行了验证及测试. 试验结果表明:该方法能在任何误差分布情况下考虑约束估计直线参数及其精度;考虑坐标相关误差时,参数估计精度在约束及无约束下分别提高了9.2%和2.7%;高斯-牛顿算法在约束及无约束情况下分别仅6次及3次迭代就搜索出最优直线. 

关 键 词:直线   曲线拟合   参数估计   误差相关   条件极值   算法
收稿时间:2020-03-24
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号