首页 | 本学科首页   官方微博 | 高级检索  
     

基于背景建模的钢轨表面缺陷像素级检测方法
引用本文:陶丹丹. 基于背景建模的钢轨表面缺陷像素级检测方法[J]. 铁道科学与工程学报, 2021, 18(2): 343-350. DOI: 10.19713/j.cnki.43-1423/u.T20200339
作者姓名:陶丹丹
作者单位:辽宁铁道职业技术学院铁道车辆学院,辽宁锦州 121000
基金项目:辽宁省教育厅科学研究经费项目
摘    要:
钢轨表面缺陷具有独特性和稀疏性,利用机器视觉技术自动地检测钢轨表面缺陷仍存在很大挑战.提出一种基于背景建模的钢轨表面缺陷像素级检测方法,利用钢轨图像固有特性构建图像背景分布模型,找到背景分布簇中心,以定位到可疑像素点;提出一种钢轨表面缺陷像素级识别方法,根据可疑像素点的上下文特征和空间位置先验概率识别该像素点是否属于真...

关 键 词:钢轨表面缺陷  像素级检测  背景模型  机器视觉

Pixel-level detection method of rail surface defects based on background modeling
TAO Dandan. Pixel-level detection method of rail surface defects based on background modeling[J]. Journal of Railway Science and Engineering, 2021, 18(2): 343-350. DOI: 10.19713/j.cnki.43-1423/u.T20200339
Authors:TAO Dandan
Affiliation:(Railway Vehicles College,Liaoning Railway Vocational and Technical College,Jinzhou 121000,China)
Abstract:
Rail surface defects are unique and sparse.It is still a great challenge to detect rail surface defects automatically by machine vision technology.A pixel-level detection method of rail surface defects based on background modeling was proposed,which uses the inherent characteristics of rail surface image to construct the image background distribution model,and finds the center points of background distribution cluster to locate abnormal pixel points.A pixel level recognition method of rail surface defects was proposed,which can identify whether the abnormal pixel point is a real defect region according to its context feature and spatial position prior probability.The rail defect datasets and the actual railway line are used to test the detection performance of the proposed method.The experimental results show that the proposed method has achieved good detection performance on two kinds of rail defect datasets and 100%detection rate on the actual railway line.
Keywords:rail surface defects  pixel-level detection  background model  machine vision
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号