首页 | 本学科首页   官方微博 | 高级检索  
     

基于背景建模的钢轨表面缺陷像素级检测方法
作者姓名:陶丹丹
作者单位:1.辽宁铁道职业技术学院铁道车辆学院
基金项目:辽宁省教育厅科学研究经费项目
摘    要:钢轨表面缺陷具有独特性和稀疏性,利用机器视觉技术自动地检测钢轨表面缺陷仍存在很大挑战。提出一种基于背景建模的钢轨表面缺陷像素级检测方法,利用钢轨图像固有特性构建图像背景分布模型,找到背景分布簇中心,以定位到可疑像素点;提出一种钢轨表面缺陷像素级识别方法,根据可疑像素点的上下文特征和空间位置先验概率识别该像素点是否属于真实缺陷,并在钢轨缺陷数据集和实际线路上进行试验验证。研究结果表明:该方法在重载铁路和客运铁路2种钢轨缺陷数据集上均取得良好的识别性能,并在实际线路上达到100%的检测率。

关 键 词:钢轨表面缺陷  像素级检测  背景模型  机器视觉
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《铁道科学与工程学报》浏览原始摘要信息
点击此处可从《铁道科学与工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号