首页 | 本学科首页   官方微博 | 高级检索  
     

到球面上的四维非齐次双调和映射连续性
引用本文:郑神州,舒连青. 到球面上的四维非齐次双调和映射连续性[J]. 北方交通大学学报, 2012, 0(3): 118-121,132
作者姓名:郑神州  舒连青
作者单位:[1]北京交通大学理学院,北京100044 [2]台洲学院数信学院,浙江临海317000
基金项目:国家自然科学基金资助项目(11071012)
摘    要:对到球面上的四维非齐次双调和映射,本文根据球面的几何结构和四维Lorentz空间的特殊性,得到了在Lorentz空间的估计式,从而得到其弱解的连续性结果.

关 键 词:非齐次双调和映射  Lorentz空间  Hodge分解

Continuity for a class of nonhomogeneous biharmonic maps into sphere in 4-dimension
ZHENG Shenzhou,SHU Lianqing. Continuity for a class of nonhomogeneous biharmonic maps into sphere in 4-dimension[J]. Journal of Northern Jiaotong University, 2012, 0(3): 118-121,132
Authors:ZHENG Shenzhou  SHU Lianqing
Affiliation:1. School of Sciences, Beijing Jiaotong University, Beijing 100044, China; 2. School of Mathematics and Information, Taizhou College, Zhejiang Linhai, China)
Abstract:We consider in 4-dimension the weak solutions of nonhomogeneous biharmonic maps into sphere with nonhomogeneous fields bounded in L^P for rome p 〉 1. Thanks to the symmetric structure of unit sphere and a special character of Lorentz spaces in 4-dimension, we derive a continuity of each weak solution of nonhomogeneous biharmonic maps into sphere.
Keywords:nonhomogeneous biharmonic maps  Lorentz spaces  Hodge decomposition
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号