首页 | 本学科首页   官方微博 | 高级检索  
     

基于在线有向无环图的船舶轨迹压缩算法
引用本文:张远强, 史国友, 李松. 基于在线有向无环图的船舶轨迹压缩算法[J]. 交通运输工程学报, 2020, 20(4): 227-236. doi: 10.19818/j.cnki.1671-1637.2020.04.019
作者姓名:张远强  史国友  李松
作者单位:1.大连海事大学 航海学院,辽宁 大连 116026;;2.宁波大学 海运学院,浙江 宁波 315211;;3.塔斯马尼亚大学 澳大利亚海事学院,塔斯马尼亚 朗塞斯顿 TAS 7250
摘    要:
为了解决船舶轨迹数据的压缩问题, 提出了一种船舶轨迹在线压缩算法; 使用多次滑动推算船位判断方法清洗船舶轨迹, 使用在线有向无环图在干净轨迹上建立压缩路径树并输出采样点; 为了提高轨迹队列和路径树在内存中的查询速度, 使用哈希表对其进行管理; 为了验证提出算法的效果, 比较了真实船舶自动识别系统数据与方向保留算法、道格拉斯-普克算法的压缩时间和误差, 采用可视化方法分析了原始轨迹、清洗轨迹和压缩轨迹。试验结果表明: 在压缩时间方面, 方向保留算法和道格拉斯-普克算法的压缩时间分别约为提出算法的1.1、1.3倍, 说明提出的算法比其他2种算法的处理时间更短; 提出的算法在压缩过程中保留了时间信息, 平均同步欧氏距离误差在任何压缩率下都能保持在10 m以下, 最大同步欧氏距离误差在压缩率为1%时仅有127 m, 而其他2种算法的平均同步欧氏距离误差和最大同步欧氏距离误差不受控制, 会随机变化; 在垂直距离误差方面, 提出的算法与道格拉斯-普克算法在压缩率不小于5%的条件下, 都能保证垂直距离误差小于20 m, 而方向保留算法的垂直距离误差会随机变化; 在显示效果方面, 提出的算法能有效清除轨迹噪声点, 压缩轨迹能够较好地代表原始轨迹的宏观交通流情况。
可见, 提出的算法能更高效地保留原始轨迹的形状和时间信息。


关 键 词:船舶自动识别系统   船舶轨迹   轨迹压缩   压缩路径树   压缩率   平均同步欧氏距离误差
收稿时间:2020-02-19
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号