首页 | 本学科首页   官方微博 | 高级检索  
     

基于行程时间影响的关键路段识别与查找
引用本文:李君羡,吴志周,沈宙彪. 基于行程时间影响的关键路段识别与查找[J]. 交通运输系统工程与信息, 2020, 20(6): 129-135
作者姓名:李君羡  吴志周  沈宙彪
作者单位:1. 同济大学 道路与交通工程教育部重点实验室,上海 201804; 2. 上海市城市建设设计研究总院(集团)有限公司,上海 200125
基金项目:国家自然科学基金/National Natural Science Foundation of China(61773288).
摘    要:从路段实际功能出发,提出基于路段与路径行程时间序列的相关性识别关键路段的方法.借鉴蒙特卡洛思想,以真实数据构造10万条随机路径验证该方法的可行性,并识别出对上海市路网行程时间有关键影响的路段集合.以上述集合为参照,利用模糊聚类及迭代累计平方和算法提取路段行程时间序列特征并构造两个新变量,结合基础属性建立二项Logit模型,从而主动查找关键路段.比较该模型与基础模型、随机分类器查找效果表明:基于最大归一化行程时间曲线聚类,其结果对关键路段识别模型的性能有提升效用;行程时间对数差分序列的结构性变点在路网和路段级别均有明显时间聚集特性,虽然其个数与路段关键性无明显关系,但其与常见波动程度指标相关性小,可保留用于描述行程时间波动常发性和聚集性.

关 键 词:城市交通  识别方法  数据分析  关键路段  行程时间  
收稿时间:2020-08-31

Identification and Retrieval of Critical Segments Based on Travel Time Effect
LI Jun-xian,WU Zhi-zhou,SHEN Zhou-biao. Identification and Retrieval of Critical Segments Based on Travel Time Effect[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 129-135
Authors:LI Jun-xian  WU Zhi-zhou  SHEN Zhou-biao
Affiliation:1. The Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China; 2. Shanghai Urban Construction Design and Research Institute (Group) Co., Ltd, Shanghai 200125, China
Abstract:Considering the actual functions of road segments in the network, a method for identifying critical segments is proposed based on the correlation between the segment and the route travel- time series. Drawing lessons from the Monte Carlo method, 100 thousand random routes created with ground truth data verify this method's feasibility. Several segments that have a crucial impact on the travel time of Shanghai's road network are identified to form a set. Taking the set as a reference, a Binomial Logit Model is built to retrieve critical segments actively, with some new attributes of the segment's travel time series extracted by the Fuzzy Clustering Method and Iterative Cumulative Sums of Squares Algorithm, and some primary attributes as well. The comparison of the model with the basic model and the random classifier shows that the maximum normalized travel time curve's clustering results can improve the critical link identification model's effectiveness. As to structural change points of the travel time logarithmic difference sequence, they show apparent time aggregation characteristics at the road network and road section levels. Although the number of structural change points has no significant correlation with the link's criticality, it has little correlation with the typical volatility index. It can be retained as an index to describe the frequent and aggregation of travel time fluctuations.
Keywords:urban traffic  identification method  data analysis  critical segment  travel time  
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号