首页 | 本学科首页   官方微博 | 高级检索  
     

基于物联网体系的智能船舶设计
引用本文:蒋佳炜, 胡以怀, 方云虎, 等. 船舶动力装置智能故障诊断技术的应用与展望[J]. 中国舰船研究, 2020, 15(1): 56–67. doi: 10.19693/j.issn.1673-3185.01679
作者姓名:蒋佳炜  胡以怀  方云虎  李方玉
作者单位:1.上海海事大学 商船学院,上海 201306;2.中航鼎衡造船有限公司,江苏 扬州 225217
摘    要:
动力系统作为整个船舶最核心的系统,其安全性和可靠性将直接影响船舶的安全航行,而有效的故障监测与诊断技术是保障航行安全的重要手段。
首先,通过分析国内外学者在智能算法与故障诊断方面的研究进展,将船舶动力装置的智能故障诊断分为数据信号获取、数据特征提取、故障识别与预测3个环节,并总结智能算法在船舶动力装置故障诊断中所面临的问题和挑战;然后,结合智能算法的特点,探讨船舶动力装置智能故障诊断技术的未来发展趋势;最后,提议从建立基于云平台的数据监测系统、建立数据库和挖掘监测数据等方面展开深入研究,用以为船舶动力装置智能诊断的工程实践应用奠定基础。


关 键 词:船舶动力装置  故障诊断  智能算法  特征提取  大数据
收稿时间:2019-07-19
修稿时间:2019-11-19

Study of intelligent ship design based on internet of things
JIANG J W, HU Y H, FANG Y H, et al. Application and prospects of intelligent fault diagnosis technology for marine power system[J]. Chinese Journal of Ship Research, 2020, 15(1): 56–67. doi: 10.19693/j.issn.1673-3185.01679
Authors:JIANG Jiawei  HU Yihuai  FANG Yunhu  LI Fangyu
Affiliation:1.Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China;2.AVIC Dingheng Shipbuilding Co., Ltd., Yangzhou 225217, China
Abstract:
As the core system of the entire ship, the safety and reliability of the power system directly affects the safe navigation of the ship, and effective fault monitoring and diagnosis technology is an important means of ensuring navigation safety. First, by analyzing the research progress of intelligent algorithms and fault diagnosis by scholars at home and abroad, the intelligent fault diagnosis of a marine power plant is divided into three parts – data signal acquisition, data feature extraction and fault identification and prediction – and the problems and challenges faced by intelligent algorithms in the fault diagnosis of marine power plants are summarized.
Then, combining the characteristics of intelligent algorithms, the future development trends of intelligent fault diagnosis technology for marine power plants are discussed. Finally, it is proposed to carry out in-depth research on the establishment of a cloud-based data monitoring system, the establishment of a database and the mining of monitoring data, in order to lay the foundation for the practical engineering application of the intelligent diagnosis of marine power plants.
Keywords:marine propulsion system  fault diagnosis  intelligent algorithm  feature extraction  big data
点击此处可从《中国舰船研究》浏览原始摘要信息
点击此处可从《中国舰船研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号