首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的地铁钢轨短波波磨特征识别
作者姓名:刘晓龙  温泽峰  肖新标  陶功权  谢清林
作者单位:西南交通大学牵引动力国家重点实验室
摘    要:地铁钢轨短波波磨现象严重影响列车运行安全,更快速、准确地对钢轨波磨进行检测,有利于及时指导钢轨打磨,从而避免或减少由钢轨波磨引发的一系列问题。文章以轮轨噪声作为检测信号,提出了一种基于支持向量机(SVM)的地铁钢轨短波波磨特征识别框架;结合轮轨噪声和短波波磨类别特点,采用时域-频域特征提取方法,以最大化支持向量机分类精度为依据,实现对特征的有效提取和选择;较为全面地考虑现实中的各类钢轨短波波磨类型,实现对短波波磨的正确分类。分类测试结果表明,基于轮轨噪声和支持向量机的地铁钢轨短波波磨特征识别方法能够有效地对波磨波长和幅值进行正确分类,其中波长分类平均精度达到97.32%,幅值分类平均精度达到97.99%.

关 键 词:钢轨波磨  轮轨噪声  支持向量机  特征提取
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号