首页 | 本学科首页   官方微博 | 高级检索  
     

机车周转图编制的自适应遗传算法
引用本文:何奉道,梁向阳,何冬昀. 机车周转图编制的自适应遗传算法[J]. 西南交通大学学报, 2006, 41(3): 273-278
作者姓名:何奉道  梁向阳  何冬昀
作者单位:1. 西南交通大学信息科学与技术学院,四川,成都,610031
2. 中铁一局集团有限公司经营开发中心,陕西,西安,710054
3. 四川大学工商管理学院,四川,成都,610064
摘    要:建立了成对与不成对列车运行图的机车周转图的数学模型和相应的机车最优配置的遗传算法.用单段映射交叉和基于知识的变异方法以及交叉概率,变异概率随个体优劣程度自适应调整策略,提高了局部搜索能力以及收敛和优化性能.以某区段实际运行图为例,用本文方法使机车总消耗时间和需要的机车数分别减少约5.7%和7.7%;用文献中的实例数据计算,与原方法相比,减少了机车总消耗时间.

关 键 词:机车周转图 遗传算法 自适应 优化 铁路
文章编号:0258-2724(2006)03-0273-06
收稿时间:2004-10-19
修稿时间:2004-10-19

Self-Adaptive Genetic Algorithm for Locomotive Diagram
HE Fengdao,LIANG Xiangyang,HE Dongyun. Self-Adaptive Genetic Algorithm for Locomotive Diagram[J]. Journal of Southwest Jiaotong University, 2006, 41(3): 273-278
Authors:HE Fengdao  LIANG Xiangyang  HE Dongyun
Abstract:A mathematical model for a locomotive diagram of a train diagram with paired and nonpaired trains was presented, and the optimized schedule was obtained with a genetic algorithm. The abilities of local search, convergence and optimization were raised with a two-point crossover operator and a knowledge-based mutation operator. The proposed method was tested over an actual problem of train diagram for a district on a railway line. The results show that the total time of locomotive operation and the required number of locomotives are reduced by about 5.7% and 7.7% , respectively. Another result shows that the proposed method reduces total time of locomotive operation compared with the method presented and for the same data taken in the same paper.
Keywords:locomotive diagram    genetic algorithm    self-adaptive    optimization    railway
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号