首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗集理论的交通流丢失数据补齐方法
引用本文:王晓原,吴芳,朴基男. 基于粗集理论的交通流丢失数据补齐方法[J]. 交通运输工程学报, 2008, 8(5)
作者姓名:王晓原  吴芳  朴基男
作者单位:山东理工大学,交通与车辆工程学院,山东,淄博,255049;南安普敦大学,交通研究所,英国,南安普敦,SO171BJ
基金项目:山东省自然科学基金,山东省社会科学规划项目
摘    要:为了解决交通检测器检测到的数据存在丢失的问题,提出了一种基于粗集理论的丢失数据补齐方法。利用检测到的交通流数据构造信息系统,通过计算扩充可辨识矩阵,并对其进行多次完整化分析,实施丢失数据的补齐,并采用英国南安普敦市的实际检测数据对算法进行了验证。研究结果表明:同一时间段,当仅有一个属性数据丢失时,粗集理论的补齐精度较高,绝对相对误差较小,基本保持在0~5%之间;当不同属性的数据同时丢失时,补齐精度较低,绝对相对误差甚至高达20%;当所有属性数据全部丢失时,补齐精度非常低,可视为无法实现补齐。可见,粗集理论是一种补齐少量丢失数据的有效方法。

关 键 词:交通工程  交通流  丢失数据  粗集理论  补齐方法

Filling method of missing data for traffic flow based on rough set theory
WANG Xiao-yuan,WU Fang,PIAO Ji-nan. Filling method of missing data for traffic flow based on rough set theory[J]. Journal of Traffic and Transportation Engineering, 2008, 8(5)
Authors:WANG Xiao-yuan  WU Fang  PIAO Ji-nan
Abstract:In order to solve the problem of missing data detected from traffic detectors,the algorithm of filling missing data was proposed based on rough set theory,information system was constructed by the detected traffic flow data,distinct matrix was extended and analyzed repeatedly,the missing data of information system were filled,the algorithm was validated with the data of Southampton.Analysis result shows that,at the same period,when only one attribute datum is missed,the filling precision based on rough set theory is higher,the absolute relative error is lower,and basically keeps between 0 and 5%;when different attribute data are missed simultaneously,the filling precision is lower,and the absolute relative error is up to 20%;when all attribute data are missed,the filling is unable to realize,so the algorithm is very effective to fill a spot of missing data.4 tabs,9 figs,12 refs.
Keywords:traffic engineering  traffic flow  missing data  rough set theory  filling method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号