首页 | 本学科首页   官方微博 | 高级检索  
     

基于高光谱成像技术的绝缘子污秽度预测
作者姓名:李恒超  谭蓓  杨刚  石超群  张血琴  吴广宁
作者单位:西南交通大学信息科学与技术学院;西南交通大学电气工程学院
基金项目:国家自然科学基金资助项目(61371165);中央高校前沿交叉基础研究项目(A0920502051814-5);中央高校基本科研业务费专项资金资助项目(2682017CX044)
摘    要:高光谱成像技术能对绝缘子进行非接触式成像,且具有多波段、图谱合一等特点. 为此,本文提出一种基于高光谱成像技术的绝缘子污秽度预测方法. 首先,利用高光谱成像仪对绝缘子进行成像,得到400~1 000 nm波段范围内的高光谱图像数据,并进行黑白校正;然后,获取感兴趣区域(region of interest,ROI)的反射率光谱曲线,进行Savitzky-Golay平滑、对数或一阶导数变换的预处理. 最后,联合部分的真实样本标签数据分别建立基于支持向量机的绝缘子污秽度预测(support vector machines-insulator contamination degree prediction,SVM-ICDP)和基于偏最小二乘回归的绝缘子污秽度预测(partial least squares regression-insulator contamination degree prediction,PLSR-ICDP)模型. 从实验结果中可知,当预处理方法采用一阶导数变换时,所建立的绝缘子污秽度预测模型效果最佳,即SVM-ICDP模型准确率达到91.84%;PLSR-ICDP模型的均方根误差(root mean square error,RMSE)为0.024 1. 

关 键 词:高光谱成像   绝缘子污秽度   支持向量机   偏最小二乘回归   预测模型
收稿时间:2018-04-08
本文献已被 CNKI 等数据库收录!
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号