首页 | 本学科首页   官方微博 | 高级检索  
     检索      

牵引电机悬挂参数对高速列车牵引传动部件振动特性的影响
引用本文:朱海燕,黎洁,尹必超,曾京,肖乾,周生通,谢锋云.牵引电机悬挂参数对高速列车牵引传动部件振动特性的影响[J].交通运输工程学报,2023,23(1):156-169.
作者姓名:朱海燕  黎洁  尹必超  曾京  肖乾  周生通  谢锋云
作者单位:1.华东交通大学 轨道交通基础设施性能监测与保障国家重点实验室,江西 南昌 3300132.华东交通大学 载运工具与装备教育部重点实验室,江西 南昌 3300133.中车南京浦镇车辆有限公司,江苏 南京 2100314.西南交通大学 牵引动力国家重点实验室,四川 成都 610031
基金项目:国家自然科学基金项目52162045江西省自然科学基金项目20224BAB204040江西省教育厅科技项目GJJ210633载运工具与装备教育部重点实验室开放课题KLCE2021-11
摘    要:基于车辆系统动力学理论建立包括柔性齿轮箱体与柔性轮对在内的刚柔耦合动力学模型,应用直接转矩控制理论建立了牵引电机控制模型,利用Simpack与Simulink联合仿真平台建立了机电耦合模型;考虑轮轨激励、车辆结构振动与谐波转矩等因素耦合作用,通过机电联合仿真对牵引传动部件振动特性进行了频谱分析,对牵引电机悬挂节点径向刚度、轴向刚度及阻尼在不同量级区间内的取值进行了研究。分析结果表明:在牵引电机谐波转矩和车轮多边形作用下,高速列车牵引传动部件出现较为明显的高频振动,牵引电机悬挂节点径向刚度为20~30 MN·m-1时,牵引电机垂向振动达到极小值,齿轮箱体与牵引电机在6倍基波频率及车轮转频处振动加速度较小,且径向刚度较小时车辆安全性指标较优;牵引电机悬挂节点轴向刚度为4~6 MN·m-1时,齿轮箱体与牵引电机受电机谐波转矩及车轮多边形高频激励的影响较小;牵引电机悬挂节点阻尼为0.1~40.0 kN·s·m-1时,转向架部件振动有效值较小,阻尼的变化对车辆动力学指标的影响甚微,且车辆安全性及平稳性指标较优。

关 键 词:车辆工程  高速列车  联合仿真  牵引电机  齿轮箱体  振动特性
收稿时间:2022-08-21

Influence of suspension parameters of traction motor on vibration characteristics of traction drive components of high-speed train
ZHU Hai-yan,LI Jie,YIN Bi-chao,ZENG Jing,XIAO Qian,ZHOU Sheng-tong,XIE Feng-yun.Influence of suspension parameters of traction motor on vibration characteristics of traction drive components of high-speed train[J].Journal of Traffic and Transportation Engineering,2023,23(1):156-169.
Authors:ZHU Hai-yan  LI Jie  YIN Bi-chao  ZENG Jing  XIAO Qian  ZHOU Sheng-tong  XIE Feng-yun
Institution:1.State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, Jiangxi, China2.Key Laboratory of Conveyance and Equipment of Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China3.CRRC Nanjing Puzhen Co., Ltd., Nanjing 210031, Jiangsu, China4.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:The rigid-flexible coupling dynamics model with a flexible gearbox and a flexible wheelset was established based on the vehicle system dynamics theory. The control model of the traction motor was established according to the direct torque control theory. The electromechanical coupling model was established by Simpack and Simulink joint simulation platform. Considering the coupling effects of wheel rail excitation, vehicle structure vibration and harmonic torque, the frequency spectrum of the vibration characteristics of the traction drive components was analyzed by the electromechanical joint simulation. The values of radial stiffness, axial stiffness and damping of suspension nodes of the traction motor were studied in different magnitude ranges. Analysis results show that under the actions of harmonic torque of the traction motor and polygon wheels, the traction drive components of high-speed trains show more obvious high-frequency vibration. When the radial stiffness of suspension node of the traction motor is 20-30 MN·m-1, the vertical vibration of the traction motor reaches the minimum value. The vibration accelerations of gearbox housing and traction motor at 6 times fundamental frequency and the rotation frequency of wheels are smaller. In addition, the vehicle safety index is better when the radial stiffness is smaller. When the axial stiffness of suspension node of the traction motor is 4-6 MN·m-1, the gearbox housing and traction motor are less affected by the harmonic torque of the motor and the high-frequency excitation of polygon wheels. When the damping of suspension node of the traction motor is 0.1-40.0 kN·s·m-1, the effective vibration value of bogie components is smaller. The change in damping has little effect on the vehicle dynamics index, and the vehicle safety and stability indexes are better. 
Keywords:
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号