首页 | 本学科首页   官方微博 | 高级检索  
     

非满载液罐半挂汽车列车侧向耦合动力学模型
引用本文:杨秀建,吴相稷,邢云祥,张昆. 非满载液罐半挂汽车列车侧向耦合动力学模型[J]. 中国公路学报, 2018, 31(11): 244-254
作者姓名:杨秀建  吴相稷  邢云祥  张昆
作者单位:昆明理工大学 交通工程学院, 云南 昆明 650500
基金项目:国家自然科学基金项目(51465023)
摘    要:为方便液罐半挂汽车列车(Tractor Semi-trailer Tank Vehicle,TSTTV)罐-车整体的优化设计匹配,综合提高整车的侧倾稳定性、侧向动力学稳定性及操纵特性,基于Lagrange方法和椭圆规摆等效机械液体晃动模型建立TSTTV的整车侧向耦合动力学模型,其典型特征是实现罐内液体侧向晃动与车辆横摆运动、侧向运动、悬挂质量的侧倾运动及非线性侧向轮胎力的集成一体化建模,贯通液体晃动动力学与车辆侧向动力学稳定性之间的联系。通过开环正弦停滞转向输入操作响应对所建立的模型进行分析评价,考察车辆横摆角速度、质心侧偏角、侧倾角、侧向载荷转移率及液体晃动角等状态量在2种充液比(FL=40%,80%)及2种罐体椭圆率(Δ=1.0,1.3)下的响应。研究结果表明:所建立的TSTTV模型可以实现液体侧向晃动作用下的车辆侧向耦合动力学仿真分析,能够反映充液比、罐体截面椭圆率等运输条件和罐体几何参数对整车侧倾稳定性、侧向动力学稳定性及操纵特性的影响;基于该模型可以针对液体介质、充液比及道路环境等运输条件因素的影响,研究以提高整车侧向动力学稳定性为目标的TSTTV灌-车整体的优化设计匹配问题,这对提升液罐车的设计性能、提高行驶的安全性和运输效率具有重要意义。

关 键 词:汽车工程  动力学系统建模  车辆动力学  液罐车  半挂汽车列车  液体晃动  
收稿时间:2018-08-15

Lateral Dynamics Modeling for Partly Filled Tractor Semi-trailer Tank Vehicle
YANG Xiu-jian,WU Xiang-ji,XING Yun-xiang,ZHANG Kun. Lateral Dynamics Modeling for Partly Filled Tractor Semi-trailer Tank Vehicle[J]. China Journal of Highway and Transport, 2018, 31(11): 244-254
Authors:YANG Xiu-jian  WU Xiang-ji  XING Yun-xiang  ZHANG Kun
Affiliation:Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
Abstract:In order to facilitate the optimal design of tractor semi-trailer tank vehicles (TSTTV) and comprehensively improve vehicle roll stability, lateral dynamics stability, and handling property, a lateral coupling dynamics model of TSTTV was established in this work based on the equivalent mechanical trammel pendulum fluid sloshing model and Lagrangian approach. A distinct feature of this model is that the degrees of freedom of different motions such as vehicle yaw motion, body lateral motion, roll motion of sprung mass, and fluid sloshing dynamics are integrated into a unified tank vehicle model. Thus, this model links fluid sloshing dynamics to vehicle lateral dynamics. The proposed model was evaluated by open-loop response subject to sine with dwell steering input. Two cases of fill level (FL=40% and 80%) and two cases of tank ellipticity (Δ=1.0 and 1.3) were evaluated in simulations. The results reveal that the proposed model can reflect the effects of fill level and tank ellipticity on vehicle roll stability, lateral dynamics stability and handling property significantly well. Thus, the proposed model is extremely suitable for the study of lateral coupling dynamics of TSTTV. In particular, the model can be used for the optimal design of TSTTV subject to the effects of certain transport conditions such as fluid type, fill level, and road features, with the aim of comprehensively improving vehicle lateral dynamics. Therefore, it is of great significance by the proposed model to enhance the design performance of tank vehicles and improve driving safety and transport efficiency.
Keywords:automotive engineering  modeling of system dynamics  vehicle dynamics  tank vehicle  tractor semi-trailer  fluid slosh  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号