首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Asymmetry of Columbia River tidal plume fronts
Authors:David A Jay  Jiayi Pan  Philip M Orton  Alexander R Horner-Devine  
Institution:aDepartment of Civil and Environmental Engineering, Portland State University, PO Box 751, Portland, OR 97201, USA;bOcean and Climate Physics, Lamont Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, USA;cDepartment of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700, USA
Abstract:Columbia River tidal plume dynamics can be explained in terms of two asymmetries related to plume-front depth and internal wave generation. These asymmetries may be an important factor contributing to the observed greater primary productivity and phytoplankton standing crop on the Washington shelf. The tidal plume (the most recent ebb outflow from the estuary) is initially supercritical with respect to the frontal internal Froude number FR on strong ebbs. It is separated from the rotating plume bulge by a front, whose properties are very different under upwelling vs. downwelling conditions. Under summer upwelling conditions, tidal plume fronts are sharp and narrow (< 20–50 m wide) on their upwind or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water. Such sharp fronts are a source of turbulent mixing, despite the strong stratification. Because the tidal plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would suggest that there should be a sharp front south of the estuary mouth under summer downwelling conditions. Instead, the downwelling tidal plume front is usually diffuse on its upstream side. Mixing is weaker, and the water masses immediately below are low in nutrients. There is also an upwelling–downwelling asymmetry in internal wave generation. During upwelling and weak wind conditions, plume fronts often generate trains of non-linear internal waves as they transition from a supercritical to a subcritical state. Under downwelling conditions, internal wave release is less common and the waves are less energetic. Furthermore, regardless of wind conditions, solition formation almost always begins on the south side of the plume so that the front “unzips” from south to north. This distinction is important, because these internal waves contribute to vertical mixing in the plume bulge and transport low-salinity water across the tidal plume into the plume bulge.FR and plume depth are key parameters in distinguishing the upwelling and downwelling situations, and these two asymmetries can be explained in terms of potential vorticity conservation. The divergence of the tidal outflow after it leaves the estuary embeds relative vorticity in the emerging tidal plume water mass. This vorticity controls the transition of the tidal plume front to a subcritical state and consequently the timing and location of internal wave generation by plume fronts.
Keywords:Plumes  Fronts  Internal waves  Tidal effects  California current  Upwelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号