首页 | 本学科首页   官方微博 | 高级检索  
     

智能船舶动力系统设备的自适应阈值方法
引用本文:高泽宇,张鹏,张博深,张跃文,孙培廷. 智能船舶动力系统设备的自适应阈值方法[J]. 中国舰船研究, 2021, 0(1): 168-174
作者姓名:高泽宇  张鹏  张博深  张跃文  孙培廷
作者单位:大连海事大学轮机工程学院
基金项目:高技术船舶科研资助项目(MC-201712-C07);国家重点研发计划项目(2018YFB1601502);中央高校基本科研业务费专项资金资助项目(3132019006)。
摘    要:
[目的]针对智能船舶动力系统设备的状态监控报警不及时、阈值带宽过大、状态评估参数不准确等问题,提出自适应阈值的确定方法,用以对动力系统设备进行监控报警和状态评估.[方法]首先,采用模拟退火算法优化回归支持向量机(SVR)预测模型,对动力系统设备的常规状态特征参数进行建模;然后,对建模残差进行正态转化,并结合滑动时间窗来...

关 键 词:智能船舶  自适应阈值  回归支持向量机  模拟退火  状态特征参数

Adaptive threshold method for intelligent ship power system equipment
GAO Zeyu,ZHANG Peng,ZHANG Boshen,ZHANG Yuewen,SUN Peiting. Adaptive threshold method for intelligent ship power system equipment[J]. Chinese Journal of Ship Research (CJSR), 2021, 0(1): 168-174
Authors:GAO Zeyu  ZHANG Peng  ZHANG Boshen  ZHANG Yuewen  SUN Peiting
Affiliation:(Marine Engineering College,Dalian Maritime University,Dalian 116026,China)
Abstract:
[Objective] In light of problems such as the untimely condition monitoring and alarm, excessively large threshold bandwidth and inaccurate condition evaluation parameters of intelligent ship power system equipment, an adaptive threshold method is proposed to monitor, alarm and evaluate the conditions of such equipment. [Method] First, a simulated annealing algorithm is used to optimize the support vector regression(SVR) machine prediction model to simulate the general state characteristic parameters of the power system equipment. Then, after the normal transformation of the modeling residual, combined with the sliding time window, the adaptive threshold model is constructed. Finally, the exhaust gas temperature of the ship’s main propulsion diesel engine is selected as the research object for example verification. [Results] The results show that compared with the traditional fixed threshold, the adaptive threshold model has more compact bandwidth and good adaptability, and can identify abnormal phenomena in power system equipment in advance. [Conclusion] This method improves the efficiency and threshold accuracy of monitoring and alarm systems, and provides an effective means of early fault diagnosis and a more accurate basis for system status evaluation.
Keywords:intelligent ships  adaptive threshold  support vector regression(SVR)  simulated annealing  state characteristic parameters
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号