摘 要: | 营运车辆驾驶人因其职业特殊性,驾驶过程中易产生分心驾驶行为从而引发重大交通事故。为提高营运车辆驾驶人分心驾驶行为的检测准确性和泛化性,提出一种基于改进MobileViT网络的驾驶人分心行为检测方法。首先,基于自然驾驶实车试验,构建包含安全驾驶、使用手机、喝水、整理仪容和与副驾驶交谈5类行为的营运车辆驾驶人分心行为数据集。其次,将注意力机制引入轻量型MobileViT网络,通过选择有效的网络主干MobileViT、注意力模块CA、网络嵌入位置从而设计出最优分类模型MobileViT-CA。研究结果表明:所提出的MobileViT-CA分类模型可以有效提升分类网络的性能,在正常光照条件下的营运车辆驾驶人分心行为数据集和State Farm数据集上分别达到了96.57%和99.89%的准确率,且模型具有体积小、检测精度高的优势,有较高的可靠性和泛化能力。
|