首页 | 本学科首页   官方微博 | 高级检索  
     检索      

深隧排水折板型竖井泄流消能的试验研究
引用本文:杨乾,杨庆华,郑立宁,田强,刘永权,姚锦涛,牟祎,尧远.深隧排水折板型竖井泄流消能的试验研究[J].西南交通大学学报,2020,55(6):1247-1256.
作者姓名:杨乾  杨庆华  郑立宁  田强  刘永权  姚锦涛  牟祎  尧远
基金项目:国家自然科学基金(51478403),四川省科技计划项目(2017SZ0043)
摘    要:针对深隧排水系统竖井泄流过程中高速气-水两相流动特性进行了水力模型试验研究,观测竖井内水流下泄过程中的型态,分析最大泄流量与折板间距的关系,计算不同工况下的竖井消能率,并揭示折板型竖井在泄流过程中的消能机理. 试验结果表明:竖井在泄流过程中存在3种水流型态:撞壁受限流、临界流和自由跌水流;泄流过程中水跃是水流在折板上消能的主要原因,水流流至井底与反向流体互相撞击破碎使竖井达到最终消能的目的;当竖井直径D = 0.4 m、折板间距d介于16.02~24.56 cm时,竖井最大泄流量介于(8.7~14.7) × 10?3 m3/s,且d与最大泄流量Qm存在线性关系;根据能量守恒定律推导出消能率公式,得到d = 19.4 cm、倾角θ = 10° 时的竖井消能率为最优;竖井盖板开孔直径 Ф 对竖井顶部压强的影响较大,当 Ф ≥ 4 cm时,竖井顶部相对压强基本为0,并且具有一定倾角的折板有利于加速竖井的泄流过程;上、中、下折板冲击力(Fu、Fm、Fd)呈现Fu > Fm > Fd 的分布规律,上、中、下折板最大面荷载分别为42.8、30.7、22.8 kN/m2. 深隧排水折板型竖井最佳泄流量和最优消能率的试验研究成果对深隧竖井工程的设计与运行提供了一定参考价值. 

关 键 词:深隧排水    折板型竖井    泄流流型    最大泄流量    消能机理
收稿时间:2019-04-10

Experimental Study on Discharge and Energy Dissipation of Baffle-Drop Shaft in Deep Tunnel Drainage System
YANG Qian,YANG Qinghua,ZHENG Lining,TIAN Qiang,LIU Yongquan,YAO Jintao,MU Yi,YAO Yuan.Experimental Study on Discharge and Energy Dissipation of Baffle-Drop Shaft in Deep Tunnel Drainage System[J].Journal of Southwest Jiaotong University,2020,55(6):1247-1256.
Authors:YANG Qian  YANG Qinghua  ZHENG Lining  TIAN Qiang  LIU Yongquan  YAO Jintao  MU Yi  YAO Yuan
Abstract:In order to study the transition characteristics with the high-speed air-water flow in the drop shaft of a deep tunnel drainage system, a hydraulic model test was conducted to observe the flow patterns in the process of drop shaft discharge, analyze the relationship between the maximum discharge and the baffle spacing, and calculate the energy dissipation rates of the drop shaft under different conditions. On this basis, the energy dissipation mechanism in the process of drop shaft discharge was revealed. Results show that there are three kinds of flow regimes in the discharge process of drop shaft, i.e., wall-impact confined flow, critical flow, and Free-drop flow. Hydraulic jump is the primary cause of energy dissipation of water on the baffle, and the collision of the water flow with the bottom-drop shaft fluid in the reverse direction and the resulted breakage achieve the ultimate purpose of energy dissipation. The maximum discharge of drop shaft is between 8.7 × 10?3 and 14.7 × 10?3 m3/s when the shaft diameter D = 0.4 m and the baffle spacing d ranges from 16.02 to 24.56 cm, and there is a linear relationship between the baffle spacing and the maximum discharge (Qm). The formula of energy dissipation rate is deduced according to the law of conservation of energy, from which the optimal energy dissipation rate of drop shaft is achieved at d = 19.4 cm and inclination angle θ = 10°. The aperture diameter (Ф) of the cover-plate has a great influence on the internal pressure of the drop shaft. When Ф ≥ 4 cm, the internal pressure is nearly 0; the baffle with a certain inclination angle is conducive to accelerating the discharge process of the drop shaft. The impact forces on the upper, middle and lower baffles (denoted by Fu, Fm and Fd, respectively) present a relation of Fu > Fm > Fd; the maximum surface loads of the upper, middle and lower baffles are 42.8, 30.7 and 22.8 kN/m2, respectively. The experimental results about the maximum discharge and optimal energy dissipation rate of baffle-drop shaft could provide a reference for the design and operation of the baffle-drop shaft of deep tunnel drainage systems. 
Keywords:
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号