首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络的湘江最大洪峰流量中、长期预报
引用本文:胡国华,宋荷花,李正最. 基于人工神经网络的湘江最大洪峰流量中、长期预报[J]. 长沙交通学院学报, 2008, 24(2): 72-77
作者姓名:胡国华  宋荷花  李正最
作者单位:1. 长沙理工大学,水利、河海工程学院,湖南,长沙,410076
2. 湖南省水文水资源勘测局水政处,湖南,长沙,410007
摘    要:将统计相关性分析与模糊方法相结合,识别出影响湘江湘潭站年最大洪峰流量的前期流域降水、大气环流形势等预报因子,通过比较几种改进的BP网络的优缺点,探讨了BP网络建模过程中存在的几个问题,建立了LMBP算法和自适应BP算法相耦合的神经网络中、长期水文预报模型.预报结果表明:预报效果好、精度高,且具有较高的推广和应用价值.

关 键 词:LMBP算法  自适应BP算法  湘江  年最大洪峰流量    长期预报

Medium-long-term prediction of annual maximum peak discharge at Xiangjiang river basin on artificial neural network
HU Guo-hua,SONG He-hua,LI Zheng-zui. Medium-long-term prediction of annual maximum peak discharge at Xiangjiang river basin on artificial neural network[J]. Journal of Changsha Communications University, 2008, 24(2): 72-77
Authors:HU Guo-hua  SONG He-hua  LI Zheng-zui
Affiliation:HU Guo-hua, SONG He-hua, LI Zheng-zui ( 1. School of Water Conservancy,River and Ocean Engineering, Changsha University of Science & Technology, Changsha 410076, China ;2. Hydrolony and Water Resources Survey Bureau of Hunan Province, Changsha 410007, China)
Abstract:An artificial neural network medium and long-term hydrological forecasting model combining with LM algorithm and fuzzy method was established.Rainfall and atmospheric circulation in earlier stage which affect the annual maximum peak discharge at the Xiangtan station of Xiangjiang river were chosen,the advantage and disadvantage of several modified BP algorithms are given,several problems in modeling process were discussed.The result shows that this model is highly effective and is useful for applications.
Keywords:LM algorithm  self-adaptive algorithm  Xiangjiang river  annual maximum peak discharge  medium-long term hydrological forecast
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号