首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A multi-objective approach for Dynamic Airspace Sectorization using agent based and geometric models
Authors:Jiangjun Tang  Sameer AlamChris Lokan  Hussein A Abbass
Institution:University of New South Wales at the Australian Defence Force Academy, Canberra, Australia
Abstract:A key limitation when accommodating the continuing air traffic growth is the fixed airspace structure including sector boundaries. The geometry of sectors has stayed relatively constant despite the fact that route structures and demand have changed dramatically over the past decade. Dynamic Airspace Sectorization is a concept where the airspace is redesigned dynamically to accommodate changing traffic demands. Various methods have been proposed to dynamically partition the airspace to accommodate the traffic growth while satisfying other sector constraints and efficiency metrics. However, these approaches suffer from several operational drawbacks, and their computational complexity increases fast as the airspace size and traffic volume increase. In this paper, we evaluate and identify the gaps in existing 3D sectorization methods, and propose an improved Agent Based Model (iABM) to address these gaps. We also propose three additional models using KD-Tree, Bisection and Voronoi Diagrams in 3D, to partition the airspace to satisfy the convexity constraint and reduce computational cost. We then augment these methods with a multi-objective optimization approach that uses four objectives: minimizing the variance of controller workload across the sectors, maximizing the average sector flight time, and minimizing the distance between sector boundaries and the traffic flow crossing points. Experimental results show that iABM has the best performance on workload balancing, but it is restrictive when it comes to the convexity constraint. Bisection- and Voronoi Diagram-based models perform worse than iABM on workload balancing but better on average sector flight time, and they can satisfy the convexity constraint. The KD-tree-based model has a lower computational cost, but with a poor performance on the given objectives.
Keywords:Dynamic Airspace Sectorization  ATC workload  Sector flight time  Distance between sector boundaries and traffic flow crossing points  Agent  Geometry computation  Multi-objective optimization  Genetic Algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号