首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络模型的混沌背景下谐波信号提取
引用本文:姜可宇,蔡志明,王平波,陆振波. 基于RBF神经网络模型的混沌背景下谐波信号提取[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(5): 850-853
作者姓名:姜可宇  蔡志明  王平波  陆振波
作者单位:海军工程大学电子工程学院,武汉,430033
基金项目:国家重点基础研究发展计划(973计划);国家重点实验室基金
摘    要:在混沌时间序列前后向联合预测模型的基础上,提出前后向联合迭代预测模型并将之用于混沌背景下谐波信号的提取.对前后向联合迭代预测模型与前向预测模型的仿真实验对比研究表明,在叠加谐波信号幅度和频率不过小的情况下,前后向联合迭代预测模型在连续类混沌背景下的谐波信号提取性能较前向预测模型好,而在离散类混沌背景下的谐波信号提取效果都很差,但仍可用于检测微弱谐波信号.

关 键 词:混沌  RBF神经网络  谐波信号  信号提取
修稿时间:2007-04-25

Radial Basis Function Neural Network Based Harmonic Signal Extraction from Chaotic Time Series
Jiang Keyu,Cai Zhiming,Wang Pingbo,Lu Zhenbo. Radial Basis Function Neural Network Based Harmonic Signal Extraction from Chaotic Time Series[J]. journal of wuhan university of technology(transportation science&engineering), 2007, 31(5): 850-853
Authors:Jiang Keyu  Cai Zhiming  Wang Pingbo  Lu Zhenbo
Affiliation:Electrical Engineering College, Naval University of Engineering, Wuhan 430033
Abstract:The forward and backward united iterative prediction model(FBUIPM) for chaotic time series based on the forward and backward united prediction model(FBUPM) is proposed,and it is used to investigate the harmonic signal extraction from chaotic time series.The results of simulation experiments showed that the proposed model has better performances in the extraction of the harmonic signals from the continuous chaotic time series than the forward prediction model,and it has awful performances in the extraction of the harmonic signals from the discrete chaotic time series,but has good detection performance.
Keywords:chaos  radial basis function neural network  harmonic signal  signal extraction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号