摘 要: | 针对列控车载设备故障复杂且故障分析多依赖人工经验完成等问题,以车载安全计算机记录的AElog故障数据为样本,提出一种基于反向传播(Back Propagation, BP)神经网络的车载设备智能故障诊断方法。为避免初选特征信息冗余,通过主分量启发式属性约简算法,对样本进行降维降噪处理。另外,考虑到BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,往往会收敛于不同的局部极小,利用遗传算法对BP神经网络的初始权值/阈值进行优化。研究结果表明:加入属性约简提高分类器的分类性能,通过遗传算法优化的BP神经网络避免局部极小问题,且迭代步数少,降低平均误差,提高分类精度。
|