首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的铁路异物侵限快速检测方法
作者姓名:王辉  姜朱丰  吴雨杰  范自柱  罗国亮  杨辉
作者单位:1.华东交通大学 软件学院,江西 南昌 330013;江西省先进控制与优化重点实验室,江西 南昌 330013;南昌虚拟现实研究院股份有限公司,江西 南昌 330000;2.江西省先进控制与优化重点实验室,江西 南昌 330013;3.华东交通大学 软件学院,江西 南昌 330013;江西省先进控制与优化重点实验室,江西 南昌 330013
基金项目:国家自然科学基金 ( 61991401 );国家自然科学基金 ( U2034211 );江西省自然科学基金资助项目 ( 20224BAB212014 );江西省自然科学基金资助项目 ( 20232ABC03A04 );教育部人文社会科学研究项目 ( 22YJCZH168 )
摘    要:针对列车运行环境内因意外突发事件所造成的异物侵限而影响列车安全运行的问题,在被广泛应用于工业领域的YOLOv3目标检测模型的基础之上,提出一种融合轨道限界和侵限异物识别的快速检测方法.首先,以ResNet-18网络作为铁路限界检测的主干网络,利用辅助检测模块提升限界检测精度,达到特征提取速度快,语义信息丰富充足等目标.同时采用基于行锚框的分割算法检测轨道线坐标位置,结合标准轨距下的限界定义确定铁路异物入侵限界的范围,以减少侵限异物检测的区域.其次,设计基于Octave卷积的层内多尺度残差模块,将单通道卷积变为基于图像频率的双通道卷积,以降低卷积计算量,进一步提升异物侵限算法的检测速度.最后,引入空间金字塔模块和特征自适应融合模块,实现高、低级语义信息交换,从而增加网络对不同尺度目标的感知能力,并减少语义冲突问题.通过对比实验验证异物侵限检测算法的精度、速度和有效性.实验结果表明,所述方法能以172帧/s的速度对轨道位置和限界区域进行检测,精确度达98.12%.与其他算法相比,在大中小3种目标尺度上都超越了其他对比算法.所提出的融合轨道限界和侵限异物检测的方法,在保证精度的前提下,速度达到YOLOv3算法的2倍,能够满足列车对侵限异物的实时检测需求.

收稿时间:2023-07-27
本文献已被 万方数据 等数据库收录!
点击此处可从《铁道科学与工程学报》浏览原始摘要信息
点击此处可从《铁道科学与工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号