首页 | 本学科首页   官方微博 | 高级检索  
     

基于卡尔曼滤波算法的公交车辆行程时间预测
引用本文:周文霞,徐建闽,刘正东. 基于卡尔曼滤波算法的公交车辆行程时间预测[J]. 交通标准化, 2007, 0(2): 174-177
作者姓名:周文霞  徐建闽  刘正东
作者单位:华南理工大学交通学院,广东,广州,510641
基金项目:国家自然科学基金 , 广东省自然科学基金
摘    要:通过分析公交车辆的行驶特性,利用卡尔曼滤波算法建立行程时间预测模型,并用该模型预测未来时段的公交车辆路段行程时间.预测结果表明,该方法预测精度较高,可有效地改善公交车辆动态调度效果,提高交通资源利用率,因此该方法具有推广意义.

关 键 词:智能交通系统  行程时间  卡尔曼滤波算法  预测  公交车辆  卡尔曼  滤波算法  公交车辆  行程时间预测模型  Kalman Filtering Algorithm  Based  Vehicles  Public Transport  Travel Time  推广意义  资源利用率  交通  效果  动态调度  改善  预测精度  方法  预测结果  路段行程时间  时段
文章编号:1002-4786(2007)02、03-0174-04
收稿时间:2006-07-10
修稿时间:2006-07-10

Forecasting of Travel Time for Public Transport Vehicles Based on the Kalman Filtering Algorithm
ZHOU Wen-xia,XU Jian-min,LIU Zheng-dong. Forecasting of Travel Time for Public Transport Vehicles Based on the Kalman Filtering Algorithm[J]. Communications Standardization, 2007, 0(2): 174-177
Authors:ZHOU Wen-xia  XU Jian-min  LIU Zheng-dong
Abstract:Through analysis on the running characteristics of the public transport vehicles, and then using Kalman filtering algorithm establish the prediction model for the travel time of the public transport vehicles. The result of using this model to predict the travel time in the future based on the detected traffic volume shows that this model has high accuracy, and the method can effectively improve the effect of operation on dynamic dispatching for public transport vehicles and the utilization of the traffic resource. So, the method has much vale to application.
Keywords:ITS   travel time   Kalman filtering algorithm   prediction   public traffic vehicle
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号