首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化灰色神经网络模型的内燃机气缸套磨损量预测的研究
引用本文:张晓南,刘安心,刘斌,张宏梅,李永. 基于优化灰色神经网络模型的内燃机气缸套磨损量预测的研究[J]. 汽车工程, 2011, 33(9)
作者姓名:张晓南  刘安心  刘斌  张宏梅  李永
作者单位:解放军理工大学工程兵工程学院,南京,210007
摘    要:气缸套磨损量是衡量汽车发动机寿命的重要因素。针对传统灰色预测模型的缺陷,采用均值修正策略,对样本数据进行预处理,实现灰色预测模型的优化;将灰色预测模型与BP网络相结合,建立了优化灰色神经网络预测模型;实例分析结果表明,优化模型能更精确地预测发动机气缸套的磨损量,为发动机的寿命预测与维修提供了更有效的方法。

关 键 词:气缸套  磨损量预测  灰色预测模型  BP网络  

A Study on the Wear Prediction of Engine Cylinder Liner Based on Optimized Gray Neural Network Model
Zhang Xiaonan,Liu Anxin,Liu Bin,Zhang Hongmei,Li Yong. A Study on the Wear Prediction of Engine Cylinder Liner Based on Optimized Gray Neural Network Model[J]. Automotive Engineering, 2011, 33(9)
Authors:Zhang Xiaonan  Liu Anxin  Liu Bin  Zhang Hongmei  Li Yong
Affiliation:Zhang Xiaonan,Liu Anxin,Liu Bin,Zhang Hongmei & Li YongEngineering Institute of Engineering Corps,PLA University of Science & Technology,Nanjing 210007
Abstract:Cylinder liner wear is an important factor to measure the life of engine.In view of the defect of traditional grey prediction model(GPM),a mean correction strategy is adopted to conduct the preprocessing of sample data and realize the optimization of GPM.By combining GPM with BP network,the optimized gray neural network prediction model is established.The results of real case analysis show that the optimized model can more accurately predict the wear of cylinder liners,providing a more effective way of engi...
Keywords:cylinder liner  wear prediction  grey prediction model  BP network  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号