首页 | 本学科首页   官方微博 | 高级检索  
     


Development and analysis of an air spring model
Authors:S. J. Lee
Affiliation:(1) Department of Electrical Engineering, University of Washington, Campus Box 352500, Seattle, WA 98195, USA;(2) Department of Electrical Engineering and Computer Science, Center for Wireless Integrated Micro Systems, University of Michigan, Ann Arbor, MI 48109-2122, USA;(3) Aerospace Engineering Department, University of Michigan, Ann Arbor, MI 48109-2122, USA
Abstract:The analytical model of an air spring can be effectively used for the design of air spring equipped vehicles to provide better ride and handling characteristics along with various functions for passenger convenience. However, establishing a general model of an air spring poses particular difficulties due to the severe nonlinearities in the stiffness and the hysteresis effects, which are hardly observed in conventional coil springs. The purpose of this study is to develop a general analytic model of an air spring — one which represents the main characteristics of stiffness and hysteresis and which can be connected to a model of pneumatic systems desigined to control air spring height. To this end, the mathematical model was established on the basis of thermodynamics with the assumptions that the thermodynamic parameters do not vary with the position inside the air spring, that the air has the ideal gas property, and that the kinetic and potential energies of the air are negligible. The analysis of the model has revealed that the stiffness is affected by the volume variation, the heat transfer, and the variation of the air mass and the effective area. However, the hysteresis is mainly affected by the heat transfer and the variation of the effective area. In particular, it was revealed that the increase of the volume due to the cross-sectional area increases the stiffness, while the increase of the volume due to the other reason decreases it. In addition, the model was used to develop the sufficient stability condition, and the stability of the model was analyzed. The paper also presents the comparison between the simulation and experimental results to validate the established model and demonstrates the potential of the model to be usefully employed for the development of the air spring and its algorithm for use in a pneumatic system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号