首页 | 本学科首页   官方微博 | 高级检索  
     

基于集成学习模型的城市轨道交通车载数据分析与列车停车误差预测
引用本文:张兴凯,张立鹏,陈钰,李欣,王晓玲. 基于集成学习模型的城市轨道交通车载数据分析与列车停车误差预测[J]. 城市轨道交通研究, 2021, 24(4): 53-57,61. DOI: 10.16037/j.1007-869x.2021.04.013
作者姓名:张兴凯  张立鹏  陈钰  李欣  王晓玲
作者单位:郑州地铁集团有限公司运营分公司,450046,郑州;卡斯柯信号有限公司,200071,上海;华东师范大学软件工程学院,200070,上海
摘    要:提出了一种基于Stacking策略的集成学习模型算法.通过基础模型算法评估阶段和基础模型算法集成阶段,成功选出K个基础模型,并基于模型集成策略完成了模型的集成工作,最终得到了基于Stacking策略的集成预测模型.基于实际案例,使用该集成模型对列车停车误差进行预测,并对预测结果进行验证.验证结果显示,基于Stackin...

关 键 词:城市轨道交通  集成学习模型  车载数据分析  列车停车误差预测  Stacking策略

Urban Rail Transit On-board Data Analysis and Train Stopping Error Prediction Based on Ensemble Learning Model
ZHANG Xingkai,ZHANG Lipeng,CHEN Yu,LI Xin,WANG Xiaoling. Urban Rail Transit On-board Data Analysis and Train Stopping Error Prediction Based on Ensemble Learning Model[J]. Urban Mass Transit, 2021, 24(4): 53-57,61. DOI: 10.16037/j.1007-869x.2021.04.013
Authors:ZHANG Xingkai  ZHANG Lipeng  CHEN Yu  LI Xin  WANG Xiaoling
Affiliation:(Zhengzhou Metro Group Co.,Ltd.,450046,Zhengzhou,China;不详)
Abstract:An ensemble learning model algorithm based on Stacking strategy is proposed.Through the evaluation stage and the integration stage of the basic model algorithms,K basic models are successfully selected,and the integration work of models based on model ensemble strategy is completed to achieve the integrated prediction model based on Stacking strategy.The integrated model is applied to predict the train stopping error of practical cases,and the prediction results are verified.The verification results show that the ensemble learning model algorithm based on Stacking strategy has high training efficiency and excellent prediction accuracy,which is a strong advantage compared to other conventional models.
Keywords:urban rail transit  ensemble learning model  on-board data analysis  train stopping error prediction  Stacking strategy
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号