首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于门控深度循环信念网络的边坡沉降预测
作者姓名:
武焱
张映雪
作者单位:
长沙理工大学交通运输工程学院
摘 要:
本研究针对现有边坡沉降预测模型精度低、无法有效反映沉降值蕴含的时序信息等问题,提出基于门控深度循环信念网络(GDRBN)的边坡沉降混合预测模型。为提高训练效率,引入自适应学习率,并以广佛肇高速公路二期工程为实例,建立多种边坡沉降预测模型,并进行计算比较。研究结果表明:基于GDRBN的边坡预测模型的预测精度比GM、BP、RNN、DBN预测模型的分别提高了69%、54%、38%、26%,可为边坡预测提供更准确的计算方法。
关 键 词:
边坡
沉降预测
深度学习
循环神经网络
自适应学习率
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号