首页 | 本学科首页   官方微博 | 高级检索  
     

基于异步优势强化学习的交通信号控制策略
作者姓名:邓兰  吴义虎
作者单位:长沙理工大学交通运输工程学院
摘    要:
为解决交通信号控制中的信号灯配时调度不合理、路口拥堵等问题,提出一种基于行动者-评论家算法的城市智能交通控制算法。该算法是一种基于异步优势的算法,可对交通状态特征进行抽象表征,并以多线程并行实现对交通状态的精确感知。该算法还参考了强化学习算法,能在最短时间内不断迭代优化其内部参数,得到交通信号控制的最优方案。为验证该算法的有效性,采用交通仿真软件SUMO,对该算法和其他3种典型的交通信号控制算法进行模拟仿真,并对仿真结果进行比较和分析。研究结果表明:与这3类典型算法中效果最好的Qlearning算法相比,该算法的交叉口车辆平均延误时间减少了14.1%,平均队列长度缩短了13.1%,平均等待时间减少了13.5%。该交通信号控制算法能有效地改善城市道路拥堵,提高道路交叉口的通行效率。

关 键 词:智能交通信号控制  城市交通控制  深度强化学习  异步强化学习
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号