首页 | 本学科首页   官方微博 | 高级检索  
     

铁路隧道二次衬砌敲击检查声音特征分析及智能识别
作者姓名:高磊  刘振奎  魏晓悦  张昊宇  张奎
作者单位:兰州交通大学土木工程学院
基金项目:国家自然科学基金资助项目(11662007,51268031);;兰州市科技计划资助项目(2018-4-33);
摘    要:
为实现铁路隧道二次衬砌背后空洞智能诊断,基于声音识别技术,建立隧道空洞敲击检查声音智能识别模型。收集645段检查锤敲击衬砌的声音样本,运用信号特征分析的基本方法,分析有空洞和无空洞状态下声音信号的时域和频域特征,并提取24维梅尔频率倒谱系数作为机器学习数据集。用主成分分析法降维,经混合粒子群算法优化的支持向量机训练后,建立铁路隧道空洞敲击检查声音智能识别模型,将该模型应用于实际铁路隧道验证其有效性。建立的声音识别模型训练时长为31 s,准确率达95.56%,且能准确对实际工程中的声音样本做出分类。研究结果表明:对2种状态下的声音样本时域特征和频域特征进行对比和分析,不同状态下短时能量和声纹都出现明显的不同。运用PCA-混合PSO-SVM建立的声音识别模型,有着较高的准确率和较快的训练速度,能够根据敲击检查声音准确判断出隧道背后是否存在空洞,如何根据声音特征判断衬砌背后空洞的大小和深度等,将是下一步研究的重点。目前铁路隧道快速无损检测还无法大范围普及,人工检查仍是使用最广泛的检查方法,通过研究敲击检查声音智能识别,为隧道智能化诊断做出新的探索,对加快人工检查速度、提高信息化程度和实现无纸...

关 键 词:铁路隧道工程  声音识别  梅尔频率倒谱系数  主成分分析  混合粒子群优化算法  支持向量机
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号