Abstract: | To enable a realistic assessment of the aeroelastic phenomena of aircraft, a simultaneous application of computational fluid dynamics (CFD), computational structural mechanics and flight mechanics has to be performed. Each discipline has developed powerful specialized tools which have to be adapted for multidisciplinary applications. The combination of CFD and elastic multibody systems is well suited for the simulation of a range of aircraft applications, especially for aircraft ground dynamics. Approaches to a coupling of elastic multibody systems and computational fluid dynamics have been performed using close coupling, that is a modal approach, and loose coupling, that is by co-simulation. In the article the applied programs and the coupling methods are presented. Advantages and limits of using multibody simulation as compared to the direct use of FEA methods for the representation of structural dynamics are discussed. Results of coupled steady and unsteady simulations are presented. Finally, an approach to the aeroelastic trim problem is shown. |