首页 | 本学科首页   官方微博 | 高级检索  
     

基于BN和ANN联合模型的舰船舱室火灾探测方法
作者单位:;1.海军大连舰艇学院航海系
摘    要:针对平时或战时火灾传感器可能出现的故障或失效问题,基于贝叶斯网络(BN)的不确定性推理特性和神经网络(ANN)良好的非线性映射能力,提出基于二者联合模型的舱室火灾探测方法,分别在正常、添加随机噪声和传感器故障条件下对模型性能进行仿真测试。结果表明,联合模型具有较强的抗干扰能力,在设定的各种情况下均能正确地判断火灾状态,具有良好的探测准确度与响应速度,单次探测耗时仅为10 ms,可有效解决舰船舱室火灾探测过程信息不确定、不完整和实时性要求高的问题。切实增强舱室火灾的早期自动探测能力。

关 键 词:舱室火灾探测  贝叶斯网络  神经网络  联合模型

Ship compartment fire detection method based on joint BN and ANN model
Abstract:
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号