首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘支持向量机的乐器音乐分类
作者姓名:刘建辉  曾丽辉  许金凤  刘遵雄
作者单位:华东交通大学,信息工程学院,江西,南昌,330013;华东交通大学,信息工程学院,江西,南昌,330013;华东交通大学,信息工程学院,江西,南昌,330013;华东交通大学,信息工程学院,江西,南昌,330013
基金项目:国家自然科学基金项目,江西省教育厅科学研究项目 
摘    要:提出使用最小二乘支持向量机LS—SVM(Least Squares Support Vector Machines)算法进行乐器音乐分类,从而实现乐器的辩识。在对Ls—sVM理论进行深入探讨的基础上,选择乐器音乐clip作为样本,进行特征提取,提取的特征包括频谱特征,短时自相关系数和MFCC等,然后用最小二乘支持向量机算法进行分类。对古琴、古筝、箜篌和琵琶音乐采取样本进行仿真实验,求得分类准确率和运行时间,同时使用逻辑回归(Logistic Regression)算法进行对比试验,其中最小二乘支持向量机和逻辑回归分类的准确率分别为96.5%和92.5%,且LS—SVM的运行时间比Logist的少。实验结果表明最小二乘支持向量机具有更为优越的分类性能和非线性处理能力,可以推广用于解决其它实际分类问题。

关 键 词:最小二乘支持向量机  乐器音乐  音乐特征
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《华东交通大学学报》浏览原始摘要信息
点击此处可从《华东交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号