首页 | 本学科首页   官方微博 | 高级检索  
     


Application of the reverse 3D scanning method to evaluate the wear of forging tools divided on two selected areas
Authors:Zbigniew Gronostajski  Marek Hawryluk  Marcin Kaszuba  Paweł Widomski  Jacek Ziemba
Affiliation:1.The Chair of Metal Forming and Metrology,Wroclaw University of Science and Technology,Woclaw,Poland
Abstract:This study is focused on tools used in the industrial hot forging process of a front wheel forging (eventually–gear wheel) manufactured for the automotive industry. Four different variants were applied for the tools: 2 die inserts were coated with two different hybrid layers (GN + PVD type), i.e. AlCrTiN and AlCrTiSiN, one insert was only nitrided, and one was pad welded, to improve tool durability. The tool wear was analysed and represented by the material degradation on the working surface, based on the 3D scanning and the material growth of the periodically collected forgings. Additionally, the scanned tools were divided into two areas, in which it was found, based on the reliminary analysis, that various degradation mechanisms are predominant. Microstructural and hardness measurements of the analyzed tools were also performed. Based on the results, it was found that, in the central part of the die insert (area A), thermo-mechanical fatigue and wear occurred, while in the area of the bridge insert (area B), only abrasive wear could be observed. For these areas (A and B), the loss of material was determined separately. In area A for the inserts with hybrid layer GN+AlCrTiSiN and gas nitrided, an intensive increase of wear took place, which was not observed for the pad welded and GN+AlCrTiN layer insert, for which, together with the increase of the forging number, a proportional growth of the loss of material occurred. In area B the weakest results were obtained for the insert with GN+AlCrTiSiN layer, while wear of other die inserts grew similar and proportional.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号