首页 | 本学科首页   官方微博 | 高级检索  
     

城市道路无信号控制路段行人过街风险分级预警模型
引用本文:褚昭明, 陈瑞祥, 刘金广. 城市道路无信号控制路段行人过街风险分级预警模型[J]. 交通信息与安全, 2023, 41(1): 53-61. doi: 10.3963/j.jssn.1674-4861.2023.01.006
作者姓名:褚昭明  陈瑞祥  刘金广
作者单位:1.公安部道路交通安全研究中心 北京 100062;;2.中国人民公安大学交通管理学院 北京 100038
基金项目:国家重点研发计划项目2020YFB1600500
摘    要:
为量化城市无信号控制路段下的行人过街风险,避免人车冲突事故频发,提出基于K-means算法的行人过街风险量化分级方法,并在此基础上建立了基于随机森林的行人过街风险分级预警模型。考虑时空接近程度及潜在碰撞伤害大小,选取冲突时间差、潜在碰撞距离与潜在碰撞能量3个指标,准确刻画出实际的人车交互场景,并利用K-means算法对行人过街风险状态进聚类划分,明确相应的行人过街风险等级。综合行人过街场景中包含的天气状况、道路交通设施、行人交通特征、机动车交通特征与历史事故等5类风险隐患因素,提出了30项行人过街风险二级指标,依据基尼不纯度对风险指标进行筛选并构建出最优的预警指标集,以此为模型输入,利用随机森林算法建立了能对行人过街风险进行细化、量化预测的分级预警模型。
以山西省某市3处行人过街样本数据为算例验证模型的可行性。算例分析表明:行人过街风险等级分为5级时,量化分级结果能与实际行人过街情景较好吻合;本文提出的分级预警模型对各风险等级预测的整体正确率可达86.67%,其中对一级与四级风险的预警能力最为突出,一级风险识别准确率达到100%,四级风险识别准确率达到94.7%。本研究提出的行人过街风险分级预警模型解决了既往研究中存在的风险指标不够全面、风险等级划分未完全贴合实际场景、预警等级未细化等问题,提高了风险预警准确率。


关 键 词:交通安全   行人过街风险   分级预警模型   随机森林算法   城市道路
收稿时间:2022-04-21
点击此处可从《交通信息与安全》浏览原始摘要信息
点击此处可从《交通信息与安全》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号