首页 | 本学科首页   官方微博 | 高级检索  
     

船用柴油机智能报警监控系统的设计
引用本文:孙锋, 刘杰, 周建辉, 杨梓辉, 毛伟兰. 轴系测试数据分布特征信息获取方法与应用[J]. 中国舰船研究, 2019, 14(S1): 183-188. DOI: 10.19693/j.issn.1673-3185.01466
作者姓名:孙锋  刘杰  周建辉  杨梓辉  毛伟兰
作者单位:1.中国舰船研究设计中心, 湖北 武汉 430064;2.武汉理工大学 能源与动力工程学院, 湖北 武汉 430063
基金项目:国家自然科学基金资助项目(51839005)
摘    要:  目的  船舶轴系监测系统具有监控对象多、测试数据量大和存储空间需求大等特点,如果存储方案不合理,数据未预先统计和分类存储,会导致数据不便于检索、计算和分析。为此,提出针对测试数据的批量统计特征数据及分表存储的方法。  方法  在现有数据库的基础上,设计时间序列特征数据表和汇总表,以及统计测试数据的均值、极值、标准差、偏度等的流程;采用仿真对比,选择均值和偏度作为特征向量;通过DBSCAN聚类设计传感器数据异常识别算法,验证对传感器系统异常数据的识别效果。  结果  结果表明,所提方法对异常数据的识别效果较好,  结论  可适用于实际测试系统的特征数据提取。

关 键 词:船舶轴系监测  特征数据  数据提取  异常数据检测  DBSCAN  聚类算法
收稿时间:2018-10-23

Design of monitor and control system for marine diesel engines
Sun Feng, Liu Jie, Zhou Jianhui, Yang Zihui, Mao Weilan. Acquisition and application of distribution characteristic information of shafting test data[J]. Chinese Journal of Ship Research, 2019, 14(S1): 183-188. DOI: 10.19693/j.issn.1673-3185.01466
Authors:Sun Feng  Liu Jie  Zhou Jianhui  Yang Zihui  Mao Weilan
Affiliation:1.China Ship Development and Design Center, Wuhan 430064, China;2.School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China
Abstract:  Objectives  The ship shafting monitoring system has many characteristics such as many monitoring objects, large amount of test data, and large storage space requirements. If there is no reasonable storage scheme and the data are not pre-counted and classified, it will cause inconvenience in data retrieval, calculation and analysis. In this end, a method for batch statistics and storage in different tables of characteristic data is proposed in this paper.  Methods  Firstly, based on the existing database, the time series characteristic data table and the summary table were designed, and a statistical method for extracting the value of the mean, extreme variance and skewness of the test data was designed. Then, through simulation comparison, the mean and skewness of the test data were selected as characteristic vectors, and the sensor anomaly recognition method was designed by DBSCAN(Density-Based Spatial Clustering of Application with Noise) clustering algorithm so as to validate the effectiveness of recognition.  Results  The results show that the proposed method has a good recognition effect on the abnormal data of the sensor system.  Conclusions  The method can be used to extractcharacteristic data in practical application.
Keywords:shafting monitoring  characteristic data  data extraction  abnormal data detection  Density-Based Spatial Clustering of Application with Noise (DBSCAN)  clustering algorithm
点击此处可从《中国舰船研究》浏览原始摘要信息
点击此处可从《中国舰船研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号