首页 | 本学科首页   官方微博 | 高级检索  
     

基于车路协同的车辆定位算法研究
作者姓名:罗文慧  董宝田  王泽胜
摘    要:为解决道路交叉口车辆由于定位信号缺失或者延迟引起的车辆定位偏差较大的问题,提出了基于车路协同的协同地图匹配算法(cooperative map-matching,CMM). 首先利用扩展Kalman滤波(extended Kalman filter,EKF)融合GPS与车载航位推算系统(vehicular dead reckoning,DR)信息作为协同地图匹配的预先定位;然后基于短程通讯技术实现车辆信息的交换与共享,在电子地图的基础上,利用道路约束实现车辆进一步定位. 为了验证算法的有效性,搭建了模拟真实场景的仿真环境进行实验. 研究结果表明:采用EKF融合GPS/DR数据的交叉口车辆定位平均偏差为9.09 m,相比GPS 的14.31 m,定位偏差减小30.87%;采用CMM算法的交叉口车辆,当参与CMM车辆数为7时,平均位置偏差为4.5 m,参与CMM车辆数为10辆时,平均位置偏差为2.75 m,相比EKF定位偏差减小69.74%. 

关 键 词:智能交通   协同地图匹配   车路协同   车辆定位系统   扩展Kalman滤波   协同定位
收稿时间:2018-01-15
本文献已被 CNKI 等数据库收录!
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号