首页 | 本学科首页   官方微博 | 高级检索  
     


Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains
Authors:Aharon Ben-Tal  Byung Do Chung  Supreet Reddy Mandala  Tao Yao
Affiliation:aFaculty of Industrial Engineering and Management, MINERVA Optimization Center, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel;bThe Harold & Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, PA 16802
Abstract:
This paper proposes a methodology to generate a robust logistics plan that can mitigate demand uncertainty in humanitarian relief supply chains. More specifically, we apply robust optimization (RO) for dynamically assigning emergency response and evacuation traffic flow problems with time dependent demand uncertainty. This paper studies a Cell Transmission Model (CTM) based system optimum dynamic traffic assignment model. We adopt a min–max criterion and apply an extension of the RO method adjusted to dynamic optimization problems, an affinely adjustable robust counterpart (AARC) approach. Simulation experiments show that the AARC solution provides excellent results when compared to deterministic solution and sampling based stochastic programming solution. General insights of RO and transportation that may have wider applicability in humanitarian relief supply chains are provided.
Keywords:Robust optimization   Dynamic traffic assignment   Demand uncertainty   Emergency logistics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号