首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于Fluent仿真的铁路货车驼峰溜放风阻力系数研究
引用本文:杨静,张红亮,周家杰,段乐毅.基于Fluent仿真的铁路货车驼峰溜放风阻力系数研究[J].交通运输系统工程与信息,2018,18(3):168-174.
作者姓名:杨静  张红亮  周家杰  段乐毅
作者单位:1. 北京建筑大学 土木与交通工程学院,北京 100044;2. 北京交通大学 交通运输学院,北京 100044
基金项目:国家自然科学基金/Nation Natural Science Foundation of China(51308029);中央高校基本科研业务费/ Fundamental Research Funds for the Central Universities(2017JBM036);北京市教育委员会科技计划一般项目/ Science and Technology Program of Beijing Education Committee (SQKM201810016006).
摘    要:针对铁路货车车体尺寸变化及装载状态对驼峰溜放风阻力系数的影响进行研究. 首先,基于空气动力学,建立了27t轴重通用C80、P80及23t轴重C70、P70等车型的Fluent仿真模型,并以满载C65货车标定模型参数.然后,计算风速和车速的合速度与车辆纵轴方向夹角α在0~80°区间内不同车型、不同装载状态货车溜放时的风阻力系数.仿真结果显示,不同车型、不同装载状态货车的风阻力系数在夹角α一致的情形下较标定车型具有较大差异:P80、 P70在α为20°时较标定车型P50风阻力系数分别增加28.5%、28.0%,满载C80、满载C70在α为25°时较标定车型满载C65分别增加30.5%、29.0%,空载C80、空载C70分别较对应车型满载状态增加47.1%、59.8%.最后,基于曲线拟合,回归出风阻力系数计算模型.本文研究解决了驼峰设计及调速控制中长期存在的铁路货车风阻力系数标定不全及轻载车辆风阻力值偏小的问题,具有重要的理论及实际意义.

关 键 词:铁路运输  风阻力系数  空气动力学  铁路货车  Fluent仿真  驼峰溜放  
收稿时间:2018-02-05

Air Resistance Coefficient of Hump Rolling Wagon Based on Fluent Simulation
YANG Jing,ZHANG Hong-liang,ZHOU Jia-jie,DUAN Yue-yi.Air Resistance Coefficient of Hump Rolling Wagon Based on Fluent Simulation[J].Transportation Systems Engineering and Information,2018,18(3):168-174.
Authors:YANG Jing  ZHANG Hong-liang  ZHOU Jia-jie  DUAN Yue-yi
Institution:1. School of Civil Engineering and Transportation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Abstract:The influences of rail wagon body parameters and loading status on Air Resistance Coefficient(ARC) during the hump rolling process are studied. Based on aerodynamics, fluent simulation models of 27 t-axle load general freight wagon, as C80、P80, and 23 t-axle load freight wagon, as C70、P70, are established. Considering different angles between the wind & wagon combined speed and the longitudinal axis of wagon during 0~80° range, the ARCs of different wagon types with different loading status are calculated. The simulation results show that, ARCs have changed a lot with different wagon types and loading status: the ARCs of P80、P70 increase significantly with growth rates 28.5%、28.0% compared with those of standardized wagon P50, the ARCs of full load C80、full load C70 increase with rates 30.5%、29.0% compared with those of standardized wagon C65, the ARCs of empty C80、empty C70 increase with rates 47.1%、59.8% compared with full load C70 status. Then based on the curve fitting method, the ARC calculation model is detained. This paper solves the problem that the ARC was calculated inaccurately for different wagon type and loading status in the past hump design and speed control. Therefore, this paper has important theoretical and practical significance.
Keywords:railway transportation  air resistance coefficient  aerodynamics  rail wagon  Fluent simulation  hump rolling  
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号