首页 | 本学科首页   官方微博 | 高级检索  
     

基于极限学习机的公交行程时间预测方法
引用本文:宋现敏,刘明鑫,马林,夏英集. 基于极限学习机的公交行程时间预测方法[J]. 交通运输系统工程与信息, 2018, 18(5): 136-142
作者姓名:宋现敏  刘明鑫  马林  夏英集
作者单位:吉林大学 交通学院,长春 130022
基金项目:国家自然科学基金/National Natural Science Foundation of China(51278220);吉林省自然科学基金/ Jilin Natural Science Foundation(20180101063JC).
摘    要:
以公交车GPS数据为基础,建立了基于极限学习机方法的公交站点间行程时间预测模型.依据GPS数据在站点附近的特征表现,定义了公交车到站临界点,并分析了临界点处车辆的5种运行状态;提出了公交车到站时刻估算方法,进而得到公交车行程时间数据;通过分析公交车行程时间数据内在特征,确定了极限学习机模型关键参数及其纬度;最后,以长春市88路公交车GPS数据为基础进行了方法验证.结果表明,所用ELM方法预测误差约为11%,并与应用广泛的BP神经网络、RBF神经网络、SVM进行对比分析,发现ELM方法在满足精度前提下拥有更快训练速度与预测可靠性.

关 键 词:智能交通  GPS数据  极限学习机  公交行程时间预测  
收稿时间:2018-06-12

Bus Travel Time Prediction Based on Extreme Learning Machine
SONG Xian-min,LIU Ming-xin,MA Lin,XIA Ying-ji. Bus Travel Time Prediction Based on Extreme Learning Machine[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 136-142
Authors:SONG Xian-min  LIU Ming-xin  MA Lin  XIA Ying-ji
Affiliation:College of Transportation, Jilin University, Changchun 130022, China
Abstract:
A travel time prediction model of Extreme Learning Machine is established based on the bus GPS data. According to the characteristics of GPS data near the station, the critical point of bus arrival is defined. Through analyzing 5 running states of the vehicle at critical point, the estimation method of bus arrival time is proposed, and then get the bus travel time data. By analyzing the travel time data features of the bus, the key parameters and its number are determined. Finally, the GPS data of the 88 bus in Changchun city are taken to verification. The results show that the prediction error of the ELM method is about 11%. Compared with BP neural network, RBF neural network and SVM which are widely used, the ELM method has faster training speed and prediction reliability under the premise of satisfying the accuracy.
Keywords:intelligent transportation  GPS data  Extreme Learning Machine  bus travel time prediction  
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号