首页 | 本学科首页   官方微博 | 高级检索  
     

基于多源数据融合的城市出租车载客出行特征研究——以岳阳市为例
引用本文:唐艳丽,蒋超,郑伯红,李茜铭. 基于多源数据融合的城市出租车载客出行特征研究——以岳阳市为例[J]. 交通运输系统工程与信息, 2018, 18(2): 45-51
作者姓名:唐艳丽  蒋超  郑伯红  李茜铭
作者单位:1. 中南大学 a. 土木工程学院,b. 建筑与艺术学院,长沙 410075;2. 岳阳市规划局,湖南 岳阳 414000
基金项目:国家自然科学基金面上项目/National Natural Science Foundation of China(51478470).
摘    要:
为探究城市出租车载客出行特征,在出租车GPS轨迹大数据基础上,融合居民出行调查数据、城市土地利用数据及天气数据,构建出租车载客出行量回归模型,得出出租车载客出行量与片区岗位数、天气状况、时段、片区面积有较强的相关性,而基于RBF神经网络构建的回归模型在上述4个因素的基础上增加了片区常住人口数和是否工作日2个因素.通过10折交叉验证表明,RBF神经网络回归模型的拟合效果比多元线性回归模型更好.

关 键 词:城市交通  GPS大数据  时空分布  多元线性回归  RBF神经网络  10折交叉验证  
收稿时间:2017-11-27

Taxi on Service Trip Characteristics Based on Multi-source Data Fusion: A Case of Yueyang
TANG Yan-li,JIANG Chao,ZHENG Bo-hong,LI Qian-ming. Taxi on Service Trip Characteristics Based on Multi-source Data Fusion: A Case of Yueyang[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 45-51
Authors:TANG Yan-li  JIANG Chao  ZHENG Bo-hong  LI Qian-ming
Affiliation:1.a. School of Civil Engineering, 1b. School of Architecture and Art, Central South University, Changsha 410075, China; 2. Yueyang City Planning Bureau, Yueyang 414000, Hunan, China
Abstract:
In order to explore the characteristics of taxi on service, those are fused that resident trip survey data, urban land use data and weather data, basis on the large data of taxi GPS trajectory. A passenger taxi travel volume regression model is constructed. It is concluded that there is a strong correlation between the passenger travel volume and the number of posts, weather conditions, time period, area of the district. Regression model and RBF neural network is constructed based on the above four factors on the increase in the district of the resident population and whether weekdays. Through 10 fold cross validation indicate that the fitting effect of RBF neural network model is better than multivariate linear regression model.
Keywords:urban traffic  GPS big data  spatial and temporal distribution  multivariate linear regression model  RBF neural network  10 fold cross validation  
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号