首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应粒子群优化算法的交通量短时预测模型
引用本文:胡晓健,王炜,陆建. 基于自适应粒子群优化算法的交通量短时预测模型[J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(1). DOI: 10.3963/j.issn.1006-2823.2009.01.003
作者姓名:胡晓健  王炜  陆建
作者单位:东南大学交通规划与管理江苏省重点实验室,南京,210096
基金项目:国家重点基础研究发展规划(973计划),国家科技支撑计划 
摘    要:在考虑交通量短时变化的时空特性和波动性基础上,建立了非线性交通量短时预测模型.根据我国城市道路交通流非线性、时变性、随机性等特点,提出自适应粒子群优化算法对非线性交通量短时预测模型进行在线修正.该自适应粒子群优化算法采用两步优化策略,对算法参数进行调整,避免算法早熟收敛,有效提高了算法的运算精度和效率.利用城市道路的实测数据,通过Mat-lab软件工具箱对该模型进行计算机仿真验证.

关 键 词:自适应  粒子群优化  交通量  短时预测

A Short-time Traffic Flow Prediction Model Based on Adaptive Particle Swarm Optimization Algorithm
Hu Xiao-jian,Wang Wei,Lu Jian. A Short-time Traffic Flow Prediction Model Based on Adaptive Particle Swarm Optimization Algorithm[J]. journal of wuhan university of technology(transportation science&engineering), 2009, 33(1). DOI: 10.3963/j.issn.1006-2823.2009.01.003
Authors:Hu Xiao-jian  Wang Wei  Lu Jian
Affiliation:Key Lab for Traffic Planning and Management;Southeast University;Nanjing 210096
Abstract:The paper proposed a new nonlinear short-time traffic flow prediction model based on space-time and wave attributes of the urban traffic flow,which effectively overcame nonlinearity,time-variation and random characteristics of the urban traffic flow.Then this paper put forward a new Adaptive Particle Swarm Optimization(APSO) algorithm to the model.This APSO algorithm introduced two-steps feedback tactics to amend parameters of the algorithm,in order to improve the accuracy and efficiency for the algorithm.F...
Keywords:adaptive  particle swarm optimization  traffic flow  short-time prediction  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号