首页 | 本学科首页   官方微博 | 高级检索  
     

基于奇异谱分析的GRNN模型在金融时间序列中的应用
引用本文:刘遵雄,周天清. 基于奇异谱分析的GRNN模型在金融时间序列中的应用[J]. 华东交通大学学报, 2011, 28(2): 29-34
作者姓名:刘遵雄  周天清
作者单位:华东交通大学信息工程学院,江西,南昌,330013
基金项目:教育部人文社会科学研究项目,江西省自然科学基金项目
摘    要:奇异谱分析(SSA)作为一类无参数、独立于模型的时间序列分析技术,适用于具有非线性、非平稳性、含噪声的金融时间序列数据的分析与研究.目前,基于SSA的预测通常采用线性递归、BP神经网络等模型,但其预测精度、训练速度并不理想.为此,该文提出基于SSA的广义回归神经网络(GRNN)预测模型,它以SSA所获取的主成份重构序列...

关 键 词:奇异谱分析  广义神经网络  线性递归  金融时间序列  预测

Application of GRNN Model Based on SSA in Financial Time Series
Liu Zunxiong,Zhou Tianqing. Application of GRNN Model Based on SSA in Financial Time Series[J]. Journal of East China Jiaotong University, 2011, 28(2): 29-34
Authors:Liu Zunxiong  Zhou Tianqing
Affiliation:(School of Information Engineering,East China Jiaotong University,Nanchang 330013,China)
Abstract:Singular spectrum analysis(SSA)is a kind of non-parameter and independent model time series anal-ysis technique,which can be suitable for analyzing and studying nonlinear,non-stationary and noisy financial time series.Nowadayst,he prediction based on SSA often adopts linear recursion,BP neural network and others as its models.Howevert,he prediction accuracy and training speed is not perfect.Thereforet,his paper proposes a new method called general regression neural network(GRNN)based on SSA that uses reconstructed series of components from SSA as its inputs and makes the closing price of tong fang as test data to forecast daily closing price.Experimental results show that the improved method is much better than original one and also slightly bet-ter than GRNN.
Keywords:SSA  GRNN  LRFf  inancial time seriesf  orecast
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号