摘 要: | 为有效降低出租车运营企业及经营者的经济成本,通过分析出租车的卫星轨迹数据,比较和选取用于电动出租车充电桩选址规划的聚类方法。以上海市电动出租车充电站的选址规划为研究对象,分别基于孤立森林和聚类算法设计异常值检测方法,对相关时段的出租车卫星数据进行清理以及数据可视化处理;比较层次聚类(Agglomerative Clustering)、高斯混合模型(Gaussian Mixture Model, GMM)、K-means聚类、Mean-Shift聚类以及谱聚类(Spectral Clustering) 5种算法的聚类效果,并选取K-means算法作为充电桩选址规划参考算法。从城市区域划分及企业运营角度确定充电桩选址方案,为未来上海市区电动出租车充电桩的数量和容量配置提供设计依据。
|