首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度强化学习与风险矫正的智能车辆决策研究
作者姓名:詹吟霄  刘潇  梁军
摘    要:为实现高速公路环境下车辆的安全决策,提出一种结合深度强化学习和风险矫正方法的行为决策模型。构建决策模型所需的目标车辆及周围车辆的行驶信息,并引入自注意力安全机制,提高车辆在复杂高速场景下对周围潜在危险车辆的注意力,综合考虑行车效率、避障等因素以设计强化学习的奖励函数。此外,为解决强化学习在决策过程中缺乏安全性保障的问题,设计风险矫正模块对决策动作进行风险评估和矫正,避免危险决策的执行。在Highway-env仿真平台上对提出的决策模型进行训练和测试。试验结果表明,提出的决策模型有较高的行车安全率和鲁棒性,其驾驶效率也优于以规则、模仿学习和单纯深度强化学习为基础的决策方法。

关 键 词:自动驾驶  深度强化学习  决策模型  风险矫正  注意力机制  奖励函数
点击此处可从《汽车工程学报》浏览原始摘要信息
点击此处可从《汽车工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号