首页 | 本学科首页   官方微博 | 高级检索  
     

一类分数阶非线性微分方程组的显式算法
引用本文:童启秀,王胜兵. 一类分数阶非线性微分方程组的显式算法[J]. 武汉水运工程学院学报, 2013, 0(5): 1119-1123
作者姓名:童启秀  王胜兵
作者单位:海军工程大学理学院,湖北武汉430033
摘    要:
讨论了一类分数阶微分方程组的一种数值算法,根据Caputo导数的性质,将分数阶微分方程组转化为Volterra积分方程组,再利用求解普通积分方程的Adams技巧,建立了分数阶微分方程组的一种显式数值算法,证明了该算法的收敛性与稳定性,并给出了数值仿真实例,证实了算法的有效性.

关 键 词:分数阶显式算法  非线性分数阶微分方程组  收敛性与稳定性  数值仿真

Solving a System of Nonlinear Fractional Ordinary Differential Equations by a Explicit Scheme
Tong qixiu,Wang shengbing. Solving a System of Nonlinear Fractional Ordinary Differential Equations by a Explicit Scheme[J]. , 2013, 0(5): 1119-1123
Authors:Tong qixiu  Wang shengbing
Affiliation:1.College of Science, Naval University of Engineering, Wuhan 43003;)
Abstract:
an explicit numerical method for the initial value problems of a system of nonlinear fractional ordinary differential equations was obtained by properties of the Caputo derivative and the Admas technique for ordinary integral equations.Then we have proved the convergence and stability of the method.At last a numerical example is provided which confirm that the method is effective in solving a system of the nonlinear fractional ordinary differential equations.
Keywords:explicit numerical method  system of nonlinear fractional ordinary differential equations  convergence and stability  numerical simulation
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号