首页 | 本学科首页   官方微博 | 高级检索  
     

快速查找初始聚类中心的K_means算法
引用本文:曹志宇,张忠林,李元韬. 快速查找初始聚类中心的K_means算法[J]. 兰州交通大学学报, 2009, 28(6): 15-18
作者姓名:曹志宇  张忠林  李元韬
作者单位:兰州交通大学,电子与信息工程学院,甘肃,兰州,730070;兰州交通大学,电子与信息工程学院,甘肃,兰州,730070;兰州交通大学,电子与信息工程学院,甘肃,兰州,730070
摘    要:传统的k_means算法对初始聚类中心十分敏感,聚类结果随不同的初始输入而波动,容易陷入局部最优.为消除这种敏感性,针对k_means算法,提出了一种新的基于数据样本分布选取初始聚类中心的方法,对公共数据库UCI里面的数据实验表明改进后的k_means算法能产生质量较高的聚类结果,并且消除了对初始输入的敏感性.

关 键 词:聚类  数据样本  欧式距离  k_means 算法  聚类中心

K_means Clustering Algorithm with Fast Lookup Initial Start Center
CAO Zhi-yu,ZHANG Zhong-lin,LI Yuan-tao. K_means Clustering Algorithm with Fast Lookup Initial Start Center[J]. Journal of Lanzhou Jiaotong University, 2009, 28(6): 15-18
Authors:CAO Zhi-yu  ZHANG Zhong-lin  LI Yuan-tao
Affiliation:(School of Electronic and Information Engineering, Lanzhou Jiaotong University, l.anzhou 730070, China)
Abstract:The traditional k_means algorithm has sensitivity to the initial start center.The clustering accuracy of k_means is affected by the initial start center,and it is very easy to sink into the part best.To solve this problem,for k_means method,we give a new method for selecting initial start center based on sample data distribution to improve the clustering accuracy of k_means.Experiments on the standard database UCI show that the proposed method can produce a high accuracy clustering result and eliminate the sensitivity to the initial start centers.
Keywords:clustering  sample data  euclid distance  k_means algorithm  clustering center
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号