首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finite Element Modeling of a Fluid Filled Cylindrical Shell with Active Constrained Layer Damping
Authors:ZHANG Yi  ZHANG Zhi-yi  TONG Zong-peng  HUA Hong-xing
Abstract:On the basis of the piezoelectric theory, Mindlin plate theory, viscoelastic theory and ideal fluid equation, the finite element modeling of a fluid-filled cylindrical shell with active constrained layer damping (ACLD) was discussed. Energy methods and Lagrange's equation were used to obtain dynamic equations of the cylindrical shell with ACLD treatments, which was modeled as well with the finite element method. The GHM (Golla-Hughes-McTavish) method was applied to model the frequency dependent damping of viscoelastic material. Ideal and incompressible fluid was considered to establish the dynamic equations of the fluid-filled cylindrical shell with ACLD treatments, Numerical results obtained from the finite element analysis were compared with those from an experiment. The comparison shows that the proposed modeling method is accurate and reliable.
Keywords:cylindrical shell  fluid-structure interaction  active constrained layer damping  finit element method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号