摘 要: | 针对强噪声情况下列车齿轮箱滚动轴承早期故障特征提取困难的问题,提出基于最小熵解卷积(minimum entropy deconvolution,MED)与参数优化变分模态分解(variational mode decomposition,VMD)相结合的故障诊断方法。首先利用MED对轴承振动信号进行降噪;其次,采用离散差分进化算法(discrete differential evolution algorithm,DDE)对VMD的参数进行优化搜索,并利用优化参数的变分模态分解算法对降噪后的故障信号进行处理,得到一系列本征模态函数;最后,选择最佳的本征模态函数进行包络分析,从而提取出故障特征。试验结果表明,该方法能有效提取列车齿轮箱滚动轴承故障特征,可用于轴承故障诊断。
|