摘 要: | 为了解决单一信息源带来的网络安全状态感知误差高的问题,研究舰船通信系统5G网络多维度安全状态感知技术。构建舰船通信系统5G网络多维度安全状态感知框架,通过多源网络安全状态信息采集单元获取5G网络安全状态信息,融合处理单元利用层次量化评估方法对其作标准化等处理后,获得5G网络安全态势样本数据集,将其作为基于Att-GRU的5G网络安全状态感知模型的输入,利用鲸鱼优化算法实现模型参数的寻优,输出为5G网络安全态势预测结果,依据预测结果与实际结果的差值计算5G网络健康度,通过还原单元对预测结果作累减反归处理,获得5G网络安全态势值,并与设置阈值作对比,实现舰船通信系统5G网络的多维度安全状态感知。实验结果表明:该技术可实现5G网络安全状态感知,神经元个数为35、批处理规模为1.2时,5G网络安全状态感知模型性能最优;5G网络安全态势预测的平均适应度与最优适应度相贴近。
|