首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的船舶水压场信号检测
引用本文:李东泽,梁瑞涛,张敬明. 基于BP神经网络的船舶水压场信号检测[J]. 舰船电子工程, 2012, 32(8): 118-119,124
作者姓名:李东泽  梁瑞涛  张敬明
作者单位:中国人民解放军92060部队,大连,116041
摘    要:船舶水压场信号总是淹没在大量的海浪杂波中,为了有效地从背景干扰中检测船舶水压场信号,文章籍海浪水压场近似服从正态分布的特性,在对接收到的海浪水压场信号进行AR建模的基础上,提取模型的自回归系数作为特征向量,采用BP神经网络进行信号检测。通过仿真数据对该检测方法进行验证,结果表明该方法简单而且易于实现,在低信噪比条件下,也能够达到较高的检测率。

关 键 词:海浪  水压场  自回归模型  BP网络

Ship Hydrodynamic Pressure Field Signal Detection Based on BP Neural Network
LI Dongze,LIANG Ruitao,ZHANG Jingming. Ship Hydrodynamic Pressure Field Signal Detection Based on BP Neural Network[J]. Ship Electronic Engineering, 2012, 32(8): 118-119,124
Authors:LI Dongze  LIANG Ruitao  ZHANG Jingming
Affiliation:(No.92060 Troops of PLA,Dalian 116041)
Abstract:In order to effectively detect ship hydrodynamic pressure field signal,which is always submerged in the ocean wave,firstly,an autoregressive model prewhitening filter has been proposed based on the normal distribution characteristic shown by the wave hydrodynamic pressure field signal.Then the coefficient of model taken as the characteristic vetctor into Back-Propagation Network to detecte the target signal.Lastly,the effectiveness of the method is verified by the numerical simulation,the computed result shows that this method is easy realized and by means of this method,it is possible to recognize whether target signal is involved or not in received signal,especially in the high sea state and low signal to noise ratio conditions.
Keywords:ocean wave  hydrodynamic pressure field  autoregressive model  back-propagation network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号