首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental validation of a mathematical model of a reed-valve reciprocating air compressor from an automotive-braking system
Authors:J Venkatesan  G Nagarajan  R V Seeniraj  R Murugan
Institution:(1) Istituto Motori of Italian National Research Council, Via Marconi, 8, 80125 Naples, Italy
Abstract:Mathematical simulation is the process of designing a model of a real system and then conducting experiments with the simulation to understand the system’s behavior. Mathematical simulation is widely used for investigating and designing compressors, and with a minimal number of simplifying assumptions, mathematical models can be used in conjunction with modern computing tools to solve complicated problems. A considerable amount of previous research has focused on the mathematical modeling of reciprocating air compressors used in automotive braking. The aim of the present work was to experimentally validate the mathematical model for such compressors. We present a simplified and effective mathematical model for estimating compressor performance, and this model can easily be executed using personal computers. Parameters such as compressor speed, discharge pressure and clearance volume were evaluated in terms of their effect on the thermodynamic behavior of compressors. The model can predict cylinder pressure, cylinder volume, cylinder temperature, valve lift and resultant torque at different crank angles; it can also predict the free air delivered and the indicated power of the compressor. Therefore, the model has been validated using experimental results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号